skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barford, Carol"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper we consider the risks to Internet infrastructure in the US due to sea level rise. Our study is based on sea level incursion projections from the National Oceanic and Atmospheric Administration (NOAA) [12] and Internet infrastructure deployment data from Internet Atlas [24]. We align the data formats and assess risks in terms of the amount and type of infrastructure that will be under water in different time intervals over the next 100 years. We find that 4,067 miles of fiber conduit will be under water and 1,101 nodes (e.g., points of presence and colocation centers) will be surrounded by water in the next 15 years. We further quantify the risks of sea level rise by defining a metric that considers the combination of geographic scope and Internet infrastructure density. We use this metric to examine different regions and find that the New York, Miami, and Seattle metropolitan areas are at highest risk. We also quantify the risks to individual service provider infrastructures and find that CenturyLink, Inteliquent, and AT&T are at highest risk. While it is difficult to project the impact of countermeasures such as sea walls, our results suggest the urgency of developing mitigation strategies and alternative infrastructure deployments. 
    more » « less